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Abstract
We deduce a class of non-Markovian completely positive master equations
which describe a system in a composite bipartite environment, consisting
of a Markovian reservoir and additional stationary unobserved degrees of
freedom that modulate the dissipative coupling. The entanglement-induced
memory effects can persist for arbitrary long times and affect the relaxation to
equilibrium, as well as induce corrections to the quantum-regression theorem.
By considering the extra degrees of freedom as a discrete manifold of energy
levels, strong non-exponential behaviour can arise, such as for example power
law and stretched exponential decays.

PACS numbers: 03.65.Yz, 42.50.Lc, 03.65.Ta, 05.40.−a

1. Introduction

Irreversible, dissipative quantum dynamics (such as of an open system embedded in an
environment of uncontrolled degrees of freedoms) differs drastically from reversible dynamics
described by a unitary time-evolution operator [1–7]. An exact description of the dissipative
dynamics can be given in the projector formalism [8], which results in a master equation
for the reduced density matrix. In most cases, analytic progress can only be made under the
Markovian hypothesis, which requires that correlation between the system and the environment
decay faster than the characteristic inverse dissipation rate 1/γ . For weak coupling, Lindblad
equations can be derived which provide completely positive mapping of the density matrix
from initial to final conditions; the underlying quantum dynamical semi-group can also be
motivated from assumptions that are independent of the weak-coupling requirement [5, 6]. A
cornerstone of this framework is the quantum-regression theorem (QRT) [9, 7], which relates
multiple-time correlation functions to single-time expectation values. Feasible exact master
equations beyond the Markovian approximation are known when a spin [2–4] or a harmonic
oscillator [10] is embedded in a bosonic bath. Also, transient deviations from Markovian
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behaviour on times shorter than 1/γ are well understood [11–13]. In general, however, only
few general results and manageable models are known for non-Markovian dynamics beyond
the transient regime [14–19].

The few recent results about strong non-Markovian effects in quantum master equations
were obtained in the context of complex environments [15] , continuous time quantum random
walks [16], stochastic Hamiltonians [17] and continuous measurement theory [18], as well
as in more mathematical settings [19]. In general, conditions for a QRT for non-Markovian
dynamics have not been established in the past.

In this paper, we present a new framework for the characterization of non-Markovian
quantum system dynamics. We show that long-time non-Markovian effects naturally occur
in composite environments where the system-to-reservoir coupling strength depends on
additional quantum degrees of freedom. The non-Markovian behaviour arises even when
the reservoir itself can be described in a Markovian approximation because the mediating
degrees of freedom become entangled with the system degrees of freedom. These effects can
persist for arbitrary long times, far beyond the transient regime. When the mediating degrees
of freedom are eliminated, the dynamics can be rewritten as the statistical superposition of
conventional master equations with a random dissipation rate. For weak coupling we obtain
a class of non-Markovian Lindblad equations which preserve the complete positivity of the
solution map known from the Markovian case. However, we find that the QRT in general is not
fulfilled, the only exception being the approach to a stationary limit which is independent of the
random dissipation rate. We also present an effective approximation to the system dynamics,
which facilitates the comparison with previous results for non-Markovian dynamics. As an
illustrative example we analyse the non-Markovian dispersive dynamics of a two-level system.
By assuming as an extra system a manifold of quantum levels, we demonstrate the possibility
of getting strong non-exponential decays.

2. Composite environments

We start from a full microscopic description, considering a system S that interacts with a
composite bipartite reservoir, which consists in a bath B endowed with extra unobserved
degrees of freedom U, which also participate in the system–environment interaction. The total
Hamiltonian reads

HT = HS + (HU + HB) + λHI (1)

with the tripartite interaction

HI = qS ⊗ (QU ⊗ QB). (2)

The identity λHI = (λQU)⊗(qS ⊗QB) implies that the operator QU sets the system–reservoir
coupling strength. For simplicity we assume that QU is a constant of motion

[HU,QU] = 0. (3)

Clearly, this assumption remains valid when the dynamics of QU is slower than the dissipative
relaxation rate3.

2.1. Reformulation in terms of a random interaction parameter strength

The dynamical evolution of the total density matrix ρT(t) is given by

ρT(t) = exp[LTt]ρT(0), (4)

3 For very slow dynamics of QU (more slowly than the dissipative relaxation rate) the system will adiabatically
follow the stationary state of equation (19).
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where LT[•] = (−i/h̄)[HT, •] is the total Liouville superoperator. In order to relate these
dynamics to conventional dynamics in environments with the fixed coupling strength, we
eliminate the unobserved degrees of freedom QU for usual factorizing initial conditions
ρT(0) = ρSB(0) ⊗ ρU(0).4 The reduced density matrix ρSB(t) = TrU[ρT(t)] of the system S
and the bath B is then given by

ρSB(t) =
∑

R

PR exp[(LH + LB + λRLI)t]ρSB(0), (5)

where LH and LB are the Liouville operators of the system and the bath, respectively, and
LI[•] = (−i/h̄)[(qS ⊗ QB), •]. The index R runs over the eigenstates |R〉 of HU. We
introduced the probabilities

PR = 〈R|ρU(0)|R〉 (6)

and the weighted coupling strengths

λR = λ〈R|QU|R〉. (7)

Indeed, equation (5) can be interpreted as a statistical average ρSB(t) = 〈
ρR

SB(t)
〉
over solutions

ρR
SB(t) corresponding to a Hamiltonian

H ′
T = HS + HB + λR qS ⊗ QB (8)

with the fixed interaction parameter λR. Each solution ρR
SB(t) participates with probability PR.

It follows that the reduced system density matrix ρS(t) = TrB[ρSB(t)] can be obtained from
the reduced density matrices ρR(t) = TrB

[
ρR

SB(t)
]

by a similar average

ρS(t) =
∑

R

PRρR(t) ≡ 〈ρR(t)〉. (9)

The random coupling formulation (9) of the system dynamics allows us to incorporate
the previous knowledge about dissipative systems with the fixed coupling strength [1–14]
(it may also form the basis for efficient numerical simulations). For instance, if the map
ρR(0) → ρR(t) is completely positive then this is inherited by the map ρS(0) → ρS(t).

In the rest of the paper, we will use the random description to make further analytical
progress for the case that the evolution of ρR(t) can be described by a Markovian Lindblad
equation [5].

3. Non-Markovian Lindblad equations

When the correlation times of the bath B are the shortest time scale, a Markovian approximation
applies. For factorizing initial conditions of the total density matrix, ρSB(0) = ρS(0) ⊗ ρB(0),
and weak coupling of S and B (λR � 1), one can then describe the evolution of the reduced
density matrix ρR(t) by a Lindblad equation [5]

dρR(t)

dt
= LH[ρR(t)] + γRL[ρR(t)]. (10)

The random dissipation rate is given by

γR = γ 〈R|Q2
U|R〉, (11)

4 For non-factorizing initial conditions between S and U, the evolution of the system can be obtained by using
projector operator techniques. In this case, a mapping onto a model with random dissipation rate is also possible,
but initial correlations between the system and the dissipation rate have to be considered. This implies an extra
inhomogeneous term in the averaged evolution equation (19), similar to the one encountered in equation (26).
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where γ is determined by the spectral density of the environment evaluated at a characteristic
frequency of the system. The Lindblad superoperator reads

L[•] = 1

2

∑
α

([
Vα, •V †

α

]
+

[
Vα•, V †

α

])
, (12)

with the operators {Vα} acting on the Hilbert space of S.
From this description, it follows that the evolution of the reduced density matrix

ρS(t) = 〈ρR(t)〉 is non-Markovian. In fact, note that due to the statistical correlation between
γR and ρR(t), the average of equation (10) cannot be written as a evolution which is local in
time

dρS(t)

dt
�= {LH + L′}[ρS(t)], (13)

with L′ being some extra Lindblad superoperator. Then, for obtaining the corresponding
non-Markovian master equation, we first write the average equation (9) in the Laplace domain
as

ρS(u) =
〈

1

u − (LH + LR)

〉
ρS(0) ≡ 〈GR(u)〉ρS(0), (14)

where LR = γRL and u is the Laplace variable. In order to cast this expression into a
deterministic closed evolution equation we have to interchange the average over the random
dissipation rate and the operator-inverse in the definition of GR. We employ the identity

ρS(u) = 1

〈GR(u)[u − (LH + LR)]〉 〈GR(u)〉ρS(0), (15)

and define a deterministic superoperator L by demanding

ρS(u) = 1

u − [LH + L(u)]
ρS(0). (16)

The superoperator L is then determined by the condition

〈GR(u)LR〉 = 〈GR(u)〉L(u) (17)

in the Laplace domain, and fulfils

〈GR(t)LR〉 =
∫ t

0
dτ 〈GR(t − τ)〉L(τ ) (18)

in the time domain5.
The consequence of this procedure is a deterministic, closed, non-Markovian evolution

equation of the reduced density matrix,

dρS(t)

dt
= LH[ρS(t)] +

∫ t

0
dτ L(t − τ)[ρS(τ )]. (19)

This equation has arbitrary long memory compared to the mean dissipation rate 〈γR〉.
By construction from the average of equation (10), the solution map ρS(0) → ρS(t) of
equation (19) is completely positive.

5 The typical solution for the superoperator L(u) is a sum of Lindblad superoperators, each with its corresponding
kernel. For the analysis of equations with a similar structure see [15–18].
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3.1. Quantum-regression theorem

For Markovian Lindblad equations the QRT [9, 7] provides direct relations between expectation
values of system observable and their correlation functions. We now use equation (19) to show
that the theorem cannot be taken for granted for composite environments. Let us introduce
a complete set of operators {Aµ} of the system, collected into a vector A, and consider the
expectation values

A(t) ≡ TrSUB[A(t)ρT(0)], (20)

as well as the correlation functions

S(t)A(t + τ) ≡ TrSUB[S(t)A(t + τ)ρT(0)], (21)

where S is an arbitrary operator for the system. The time dependence of the operators refers
to a Heisenberg representation with respect to the total Hamiltonian (1).

Based on the random formulation (9), (10) of the dynamics, the expectation values and
correlation functions can be written as averages over the dissipation rate,

A(t) = 〈TrS[AρR(t)]〉 ≡ 〈A(t)R〉, (22a)

S(t)A(t + τ) = 〈TrS{A e(LH+LR)τ [ρR(t)S]}〉
≡ 〈S(t)A(t + τ)R〉. (22b)

The expressions deliver evolution equations

d

dt
A(t) = 〈M̂RA(t)R〉, (23a)

d

dτ
S(t)A(t + τ) = 〈M̂RS(t)A(t + τ)R〉, (23b)

where the matrix M̂R acts on the indices of A and is defined by the condition

TrS{A(LH + LR)[S]} = M̂RTrS{AS}. (24)

When γR is fixed, the evolution equations (23a) for expectation values and (23b) for
correlation functions are identical, which recovers the QRT for Markovian dynamics. In the
non-Markovian case, however, both equations still involve the average over the dissipation
rate.

By using the same procedure as for the density matrix, we can transform equation ( 23a)
into a closed deterministic evolution equation,

d

dt
A(t) = −

∫ t

0
dτ M̂(t − t ′)A(t ′). (25)

The deterministic kernel matrix M̂(t) fulfils an equation similar to equation (17), but written
in terms of M̂R and its corresponding propagator.

Equation (23b) has the same structure as equation (23a), but in the remaining average
over the dissipation rate we are confronted with a subtlety. While equation (23a) is defined
with initial conditions fixed at t = 0, equation (23b) gives the solution with the initial
condition S(t)A(t)R at finite time t. From the definitions in equations (22b) and (24) we find
statistical correlations between M̂R and S(t)A(t)R, which both depend on γR. Dynamically
these correlations can be understood by realizing that S(t)A(t)R is of the form of a single-time
expectation value and hence evolves according to equation (23a). We still can disentangle
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the average over the dissipation rate by the procedure employed for the density matrix and
the expectation value, but instead of a homogeneous equation of the form (25) obtain an
inhomogeneous equation

d

dτ
S(t)A(t + τ) = −

∫ τ

0
dt ′ M̂(τ − t ′)S(t)A(t + t ′) + I(t, τ ), (26)

where the term I(t, τ ) accounts for the correlations.
The QRT is fulfilled when the inhomogeneity I(t, τ ) vanishes, as is the case for Markovian

dynamics where the average over the dissipation rate is absent. Equation (22b) implies that the
inhomogeneity dies out in the long-time limit if the asymptotic state ρR(∞) does not depend
on γR; the QRT is then asymptotically valid. However, if the asymptotic state ρR(∞) depends
on γR the inhomogeneous term will contribute at all times, even in the asymptotic regime, and
the QRT is invalidated.

3.2. Effective approximation

In order to obtain a general characterization of the dynamics, we introduce the following
approximation. In equation (17) we discard the dependence introduced by the Lindblad
superoperator L in the propagator GR(u), i.e. LR → −γRI. Thus, we can write the
approximated equation as〈

γR

u − LH + γR

〉
L ≈

〈
1

u − LH + γR

〉
L(u), (27)

which is solved by

L(u) � K(u − LH)L, (28)

with the function

K(u) =
〈

γR

u + γR

〉 〈
1

u + γR

〉−1

. (29)

From here, the density matrix evolution reads

dρS(t)

dt
� LH[ρS(t)] +

∫ t

0
dτK(t − τ) e(t−τ)LHL[ρS(τ )]. (30)

In this approximation all information about the extra system U is encoded in the kernel
K(u), which is defined by equation (29). While this approximation is not controlled, it is
clearly useful for characterization of the possible non-Markovian effects. The solution of
equation (30) will differ from the exact solution of equation (19) only through small time-
dependent corrections, of order 1, of the decay rate parameters. On the other hand, we notice
that the structure of the evolution equation (30) is similar to that found in [18] in the context
of a continuous measurement theory.

3.3. Stochastic state representation

In the previous approximation, it is not clear whether the final evolution guarantees the
completely positive condition. Here, by introducing a stochastic representation of the
dynamics, we prove that indeed this condition is preserved.

In the Laplace domain equation (30) reads

uρS(u) − ρS(0) = {LH + K(u − LH)L}ρS(u). (31)
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By assuming that L = E− I,6 with E[•] = ∑
α Vα • V †

α , we arrive at

ρS(u) =
{

1

I − w(u − LH)E

}
1 − w(u − LH)

u − LH
ρS(0), (32)

where we have introduced the function

w(u) =
〈

γR

u + γR

〉
. (33)

From here, it is possible to obtain the formal solution

ρS(t) = P0(t) etLHρS(0) +
∫ t

0
dτ w(t − τ) e(t−τ)LHE[ρS(τ )], (34)

where P0(u) = [1 − w(u)]/u = 〈(u + γR)−1〉. This equation has a clear stochastic
interpretation. It corresponds to an average of a stochastic density matrix ρst(t) whose
evolution consists in the application, at random times, of the superoperator E , while in the
intermediate intervals the system state evolves with its unitary evolution exp[tLH]. The
statistics of the random times is dictated by w(τ), which can be interpreted as a waiting
time distribution, i.e. it is the probability density for an interval τ between consecutive
applications of E . In correspondence, P0(t) = 1 − ∫ t

0 dτw(τ) is the survival probability
associated with w(τ). Then, the first term in equation (34) represents realizations without any
application of the superoperator E , while the integral term accounts for all other realizations.
Thus, we can write ρS(t) = 〈〈ρst(t)〉〉, where 〈〈· · ·〉〉 denotes the average over the random times
at which E is applied. As each realization preserves the complete positivity, this property is
also present in the averaged evolution.

The previous stochastic framework allows us to clarify the role of the kernel K(t). This
follows after introducing the sprinkling distribution [20] f (t) = w(t)θ(t) +

∫ t

0 w(t − τ)f (τ),

where θ(t) is the step function7. From its definition, f (t) gives the probability density for an
event at time t, disregarding the possibility of extra events in (0, t). In the Laplace domain it
reads f (u) = w(u)/[1 − w(u)]. From here it is simple to get the relation K(t) = df (t)/dt ,
which defines the kernel as the rate of the sprinkling distribution.

When the unitary dynamics commutate with the action of the superoperator E , in an
interaction representation the stochastic dynamics reduces to that presented in [16]. On
the other hand, a similar stochastic interpretation may be proposed for the exact evolution
equation (19), involving many renewal processes. Nevertheless, their specific form depends
on the details of each problem.

It is interesting to note that expressions similar to equation (34) arise in the context of
the micromaser theory [21–23]. This system consists in an electromagnetic cavity that is
continuously pumped with excited atoms. In our scheme, the waiting time distribution w(t)

can be associated with a non-Poissonian pump statistic, while the superoperator E with the
transformation produced in the cavity field by the passage of each atom. Therefore, the extra
system U can be associated with the pumps degree of freedom. This comparison enlightens
the dynamical origin of the non-Markovian effects.

6 In a general case, where L �= E− I, with E a completely positive superoperator, the stochastic dynamics can only
be established in a formal way after introducing a limit procedure [16]. In this case, the superoperator reads E[ρ] =
{I + [eκL− I]}ρ, where κ must be intended as a control parameter. Equation (30) is recovered in the limit in which
simultaneously κ → 0 and the number of events by unit of time go to infinite, the last limit being controlled by
the sprinkling distribution f (t) → f (t)/κ [20] associated with the waiting time distribution w(t). Then, while the
stochastic dynamics can be formally extended to the general case, it is not possible to implement it as a numerical
method to solve the corresponding master equation.
7 Here the step function θ(t) is defined as θ(t) = 1 for t > 0, and θ(t) = 0 for t � 0. With this definition it follows
that f (t)|t=0 = 0.
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3.4. Dephasing of a two-level system

As an illustrative example of our results we consider a two-level system, described by the
Hamiltonian HS = (1/2)h̄ωAσz, where σz is the Pauli z-matrix, which is weakly connected to
a composite environment. The reservoir B is described by the dispersive Lindblad operator

L[•] = 1
2 ([σz•, σz] + [σz, •σz]), (35)

and the mediating part U is described by an arbitrary set {γR, PR} of dissipation rates and
weights.

The evolution of the density matrix is given by the non-Markovian Lindblad equation (19).
From equation (17) we find the superoperator L(u) = K(u − LH)L, with the kernel K(u)

defined in equation (29). Thus, in this case, the evolution equation (30) is exact.
The density matrix solution can be easily found in an interaction representation with

respect to the system Hamiltonian. We find the completely positive map

ρS(t) = g+(t)ρS(0) + g−(t)σzρS(0)σz, (36a)

g±(t) = 1
2 [1 ± P0(t)]. (36b)

The function P0(t) = ∑
R PR exp[−γRt] is the survival probability defined previously.

Depending on the distribution of the dissipation rate, arbitrary forms of the decay can be
obtained from this average over exponential functions. Hence, the non-Markovian behaviour
can be observed in the relaxation of the density matrix to the stationary state.

Let us now illustrate the consequences for the QRT; hence, the expectation values and
correlators of the vector of Pauli operators A ≡ {σx, σy, σz, I }. For the expectation value (in
the interaction representation) we find

A(t) = Ĝ(t)A(0), (37)

where the matrix propagator reads Ĝ(t) = diag{P0(t), P0(t), 1, 1}. Consistently with
equation (26), the correlation functions

S(t)A(t + τ) = Ĝ(τ )S(t)A(t) + I0h(t, τ ). (38)

feature an extra inhomogeneity, which is given by I0 = D̂ TrS{[ρS(0) − ρS(∞)]SA}, with
the matrix D̂ = diag{1, 1, 0, 0}, and the function h(t, τ ) = P0(t + τ) − P0(t)P0(τ ). In the
Markovian case h vanishes since the survival probability P0(t) is an exponential, and the QRT
is valid for all times. For non-Markovian dynamics, the theorem is valid in the long-time
asymptotic, since the inhomogeneous term dies out as the equilibrium state ρS(∞) is attained
(consistently, in this example ρR(∞) is independent of the dissipation rate γR).

4. Entanglement with a discrete manifold of energy levels

Up to now we have left unspecified the unobserved degrees of freedom U, which determine
the set {γR, PR}. In this section, we will analyse the case in which U is defined by a discrete
set of energy levels.

In the effective approximation, the properties of the unobserved degree of freedom are
introduced through the kernel K(t), which is associated with the renewal process defined by
w(t) = ∑

R PRγR e−γRt . This process has two characteristic times scales

〈γ 〉 =
∑

R

PRγR, 〈τ 〉 =
∑

R

PRγ −1
R . (39)

When these constant are well defined, the average rate 〈γ 〉 defines an exponential decay of the
waiting time distribution at short times [〈γ 〉t < 1], lim u→∞w(u) ≈ 〈γ 〉/(u + 〈γ 〉), and the
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average waiting time 〈τ 〉 = ∫ ∞
0 d tw(t) characterizes an exponential decay of w(t) in a long

time regime [t > 〈τ 〉], lim u→0w(u) ≈ 1 − u〈τ 〉. On the other hand, in terms of the sprinkling
distribution we get lim t→0+f (t) = 〈γ 〉 and lim t→∞f (t) = 1/〈τ 〉.

4.1. Entanglement with a two-state system

First we assume that the unobserved system U is a two-level system. The waiting time
distribution then reads w(t) = P↑γ↑ e−γ↑t + P↓γ↓ e−γ↓t , with the condition P↑ + P↓ = 1 and
arbitrary rates γ↑/↓. Introducing the rates η = P↑γ↓ + P↓γ↑ and β = [〈γ 2〉 − 〈γ 〉2]/〈γ 〉, the
Laplace transform w(u) can be written as

w(u) = 〈γ 〉
u + 〈γ 〉 + βσ(u)

, (40)

with σ(u) = u/[u + η/(〈γ 〉〈τ 〉)] . The corresponding kernel equation (29) results as

K(u) = 〈γ 〉
1 + βσ(u)/u

, (41)

which in the time domain reads K(t) = 〈γ 〉[δ(t) − β e−ηt ]. We note that the fluctuation
rate β controls departure from a Markov kernel. The sprinkling distribution results as
f (t) = 〈γ 〉θ(t) − [〈γ 〉 − 〈τ 〉−1](1 − e−ηt ), where we have used η[1 − (〈γ 〉〈τ 〉)−1] = β.
As expected, 〈γ 〉 and〈τ 〉−1 give respectively the asymptotic values of f (t) in the short and
long time regimes, while η gives the rate for the transition between these two regimes.

4.2. Entanglement with an N-manifold of states

Now we characterize the case in which the system U consists in a manifold of N states
[0 � R � N − 1] whose consecutive energy difference is constant. We assume that the
coupling strength of each level with the system-bath-set decreases in an exponential way with
the level energies, as well as their stationary populations

γR = γ exp[−bR], PR = (1 − e−a)

(1 − e−aN)
exp[−aR]. (42)

The constant γ characterizes the Markovian decay of the system, and b is a free dimensionless
parameter that measures the strength of the coupling between each states and the system-
bath-set, i.e. QU = ∑N−1

R=0 exp[−bR/2]|R〉〈R|. The second free parameter a measures the
exponential decay of the populations. By taking a = h̄ω0/kT , where h̄ω0 is the difference
of energy between consecutive levels, the populations correspond to a thermal distribution at
temperature T.

The average rate reads

〈γ 〉 = γ

(
1 − e−a

1 − e−(a+b)

) (
1 − e−(a+b)N

1 − e−aN

)
, (43)

from where the average waiting time follows immediately

〈τ 〉 = γ −1

(
1 − e−a

1 − e−(a−b)

) (
1 − e−(a−b)N

1 − e−aN

)
. (44)

In an intermediate regime, 〈γ 〉−1 < t < 〈τ 〉−1, the corresponding waiting time distribution
may present a power law behaviour. In fact, in the limit of N → ∞ , where the N-manifold
states are equivalent to a thermal harmonic oscillator in equilibrium at temperature T, it is
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possible to prove that, after a time transient of order 1/γ , the waiting time distribution behaves
as [24]

w(t) ≈ 1/(γ t)1+α, α = a/b. (45)

For finite N, this behaviour is also present, nevertheless the asymptotic behaviour changes to
an exponential decay with rate 〈τ 〉−1.

For a < b [0 < α < 1] the behaviour of w(t) can be captured with a simple analytical
expression. Taking into account the results for the case N = 2, equations (40), (41), we
propose the complete monotone function [16]

w(u) = 〈γ 〉
u + 〈γ 〉 + β1−ασα(u)

, (46)

where as before β ≈ [〈γ 2〉−〈γ 〉2]/〈γ 〉, and now σα(u) = [
(u+γc)

α −γ α
c

]
. Using the relation

K(u) = w(u)/P0(u), the kernel reads

K(u) = 〈γ 〉
1 + β1−ασα(u)/u

. (47)

From lim u→0w(u) ≈ 1− [u+β1−ασα(u)]/〈γ 〉, the asymptotic exponential decay of w(t) with
rate 〈τ 〉−1 can be fitted with the cutoff γc after imposing the relation α(β/γc)

1−α = 〈γ 〉〈τ 〉−1.
On the other hand the constant β fits the power law regime. In fact, in the limit
N → ∞, the average waiting time equation (44) is infinite, which implies γc = 0. Thus,
lim u→0w(u) ≈ 1 − β1−αuα/〈γ 〉, implying a pure power law asymptotic behaviour [25].

The previous analysis demonstrates that the transient behaviour between the short and
asymptotic exponential decays of w(t) is described by a power law. As we have seen in the
previous section, this behaviour is in general reflected by the system dynamics. On the other
hand, we notice that when N → ∞, by maintaining the average rate 〈γ 〉 fixed, the fluctuation
rate β reaches its maximum value in the limit of both, strong coupling b � 1 and small
populations decay a � 1 (which can also be read as a high temperature limit). In this case,
after the transient t < 〈γ 〉−1, the waiting time distribution and the kernel can be approximated
by the expressions

w(u) ≈ Aα

Aα + uα
, K(u) ≈ Aαu1−α, (48)

with Aα ≈ 〈γ 〉/β1−α ≈ 〈γ 〉α . These expressions correspond to a fractional derivative
evolution [16], where stretched exponential and power law behaviour arises jointly.

5. Conclusions

We have shown that a system in a composite bipartite environment (where the system-to-
reservoir coupling depends on other degrees of freedom) follows non-Markovian dynamics
even when the reservoir itself can be eliminated by a Markovian approximation. The non-
Markovian effects originate in the entanglement of the system with the mediating degrees of
freedom, and may persist for arbitrary long times.

Our results are derived from a random rate reformulation of the dynamics in the composite
environment which allows us to make full contact to the established theory of dissipative
systems with constant coupling. On this basis, we formulated non-Markovian Lindblad
equations which provide complete positive mappings of the density matrix from initial to final
conditions, and identified conditions for the quantum-regression theorem. It should be noted
that the random rate formulation is not restricted to the Lindblad master equations but can
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be applied to other master equations, including exact master equations which may already
include non-Markovian effects at fixed coupling.

In an effective approximation all information about the extra degrees of freedom is
introduced by a memory kernel. The corresponding density matrix evolution can be interpreted
in terms of the stochastic process in the system Hilbert space. System decay behaviours ranging
from stretched exponential to power law can be obtained by taking the system U as a discrete
manifold of states.

The present formalism substantiates previous results on non-Markovian master equations
[14–19], and puts them into the alternative and greater perspective of systems embedded in a
composite environment. Our motivation to study this kind of environment arises from recent
experiments on fluorescent single quantum dots [26–29], where non-Markovian effects on time
scales much larger than 1/γ were found. While the underlying physical mechanisms are not
completely clear, it has been argued [30, 31] that the experimental results can only be recovered
when one accounts for additional degrees of freedom which modulate the dissipative coupling.
Thus, besides its theoretical interest in the context of strong non-Markovian effects in open
quantum systems, the characterization of the dynamics induced by composite environments
may also be of interest in those experiments. On the other hand, we believe that the present
results may be useful in modelling the dynamics of open quantum systems embedded in
complex structured host environments. In fact, the tri-partite interaction investigated by us
naturally arises when one considers the dynamical effects of a disordered condensed-matter
environment on a system coupled to a (say, Markovian) environment. The coupling strength
of the system to the Markovian environment is proportional to the density of states of the
Markovian environment at a characteristic frequency of the system; this density of states,
in turn, depends on the condensed-matter environment (e.g. the disorder configuration, or
the charging of trap states). Taking the dynamics of the condensed-matter environment
into account, the coupling strength then becomes as a dynamical variable, leading to the
multiplicative tri-partite coupling that was considered in this paper.

In the description of condensed-matter systems, multipartite interactions also frequently
appear as a consequence of a suitable transformation (such as the Fröhlich transformation) [32].
Such transformations can be used to eliminate (at least to some order of a small parameter)
the time dependence of a certain subsystem, which then takes on the characteristics of our
(stationary) unobserved degrees of freedom.
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Cambridge University Press)
[21] Marte M A M and Zoller P 1989 Phys. Rev. A 40 5774
[22] Cresser J D and Pickles S M 1996 J. Opt. B: Quantum Semiclass. Opt. 8 73
[23] Herzog U 1995 Phys. Rev. A 52 602
[24] Alemany P A 1997 J. Phys. A: Math. Gen. 30 6587
[25] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[26] Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautmann J K, Harris T D and Brus L E 1996 Nature

383 802
[27] Michler P, Imamoglu A, Mason M D, Carson P J, Strouse G F and Buratto S K 2000 Nature 406 968
[28] Brokmann X, Hermier J P, Messin G, Desbiolles P, Bouchaud J P and Dahan M 2003 Phys. Rev. Lett. 90 120601
[29] Aquino G, Palatella L and Grigolini P 2004 Phys. Rev. Lett. 93 050601
[30] Kuno M, Fromm D P, Hamann H F, Gallagher A and Nesbitt D J 2001 J. Chem. Phys. 115 1028
[31] Schlegel G, Bohnenberger J, Potapova I and Mews A 2002 Phys. Rev. Lett. 88 137401
[32] Wagner M 1986 Unitary Transformations in Solid State Physics (Amsterdam: North-Holland)


	1. Introduction
	2. Composite environments
	2.1. Reformulation in terms of a random interaction parameter strength

	3. Non-Markovian Lindblad equations
	3.1. Quantum-regression theorem
	3.2. Effective approximation
	3.3. Stochastic state representation
	3.4. Dephasing of a two-level system

	4. Entanglement with a discrete manifold of energy levels
	4.1. Entanglement with a two-state system
	4.2. Entanglement with an N-manifold of states

	5. Conclusions
	References

